
P H Y S I C A L R E V I E W V O L U M E 1 3 2 , N U M B E R 5 1 D E C E M B E R 1 9 6 3 

First-Order Perturbation Corrections to the Hartree-Fock Approximation for Helium* 
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Variational perturbation theory has been used to compute the first-order wave function for the ground 
state of the helium atom, in a scheme where the Hartree-Fock function is treated as the zeroth-order approxi­
mation. The first-order function was approximated by a Hylleraas-like expansion, explicitly containing ru. 
We obtain a total energy through third order of —2.90262 a.u., as compared with the nonrelativistic eigen­
value of —2.90372. The first-order corrections to expectation values of a selection of one- and two-electron 
operators have been computed. The calculations have also been done for the isoelectronic ions, H~, Li+, 
and Be2+. 

INTRODUCTION 

IT is well known that the Hartree-Fock approximation 
neglects the details of the interelectronic repulsions, 

treating them in only an average fashion. The resulting 
error, which has come to be known as the "correlation 
error," can for many purposes be significant. A consider­
able body of literature has come into existence dealing 
with just this problem in a variety of ways.1 Almost 
invariably, the approach has been to approximate the 
many-electron eigenfunction by a variational wave 
function, which explicitly accounts, to some extent at 
least, for the electron correlation. The most successful 
of these approaches has given the ground-state energy 
of the helium atom to well within the experimental 
uncertainties.2 

In this paper, we follow a somewhat different ap­
proach, which has not yet received much computational 
attention, although the formalism has been discussed 
by several authors.3-6 The total Hamiltonian is sepa­
rated into two parts: one part consisting of the sum of 
the Fock operators, for which the Hartree-Fock orbitals 
are eigenfunctions, and a second part containing every­
thing that is left over, which is treated as a perturbation. 
The iV-electron Hartree-Fock function then becomes 
the first term (zeroth order) in a perturbation expansion 
of the exact wave function, all the correlation effects 
being thrown into the higher order corrections. 

We report here variational calculations of the first-
order function for the ground state of the helium atom 
(and some isoelectronic ions), based on the variational 

* This research is a part of project DEFENDER, sponsored by 
the Advanced Research Projects Agency, Department of Defense, 
through the Office of Naval Research. 

1 Rather than attempt to cite all the relevant literature, the 
reader is referred to several reviews on the subject. See, e.g., 
P. O. Lowdin, Advances in Chemical Physics (Interscience Pub­
lishers, Inc., New York, 1959), Vol. 2; J. C. Slater, Quantum 
Theory of Atomic Structure (McGraw-Hill Book Company, Inc., 
New York, 1960), Vol. 2. 

2 C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216 (1959). 
3 C. Miller and M. S. Plesset, Phys. Rev. 46, 618 (1934). 
4 E. M. Corson, Perturbation Methods in the Quantum Mechanics 

of n-Electron Systems (Hafner Publishing Company, Inc., New 
York, 1950), pp. 150-156. 

6 0 . Sinanoglu, Proc. Roy. Soc. (London) A260, 379 (1961). 
6 M . Cohen and A. Dalgarno, Proc. Phys. Soc. (London) 77, 

748 (1961). 

principle for the second-order energy.7 In particular, 
to obtain definitive numerical results, the first-order 
function has been approximated by a Hylleraas-like 
expansion explicitly involving nonnegative powers of 
ri2. The primary purpose of this investigation is to 
isolate, for a simple system, how much of the correlation 
effects are contained in the first-order correction, with 
the intention of assessing the possibilities of the scheme 
for more complex systems. 

There is another more conventional way of applying 
the variation-perturbation procedure to atomic systems, 
which deserves mention at this point.8 This scheme, 
which we will refer to as the "hydrogenic" perturbation 
approach, takes the sum of the bare-nucleus (hydrogen­
like) Hamiltonians as the zeroth-order Hamiltonian 
and treats the entire interelectronic repulsion as the 
perturbation. The perturbation expansion of the energy 
and all expectation values becomes a descending power 
series in the nuclear charge, Z. There has recently been 
a renewed interest in this approach,9-12 and we will be 
making comparisons between it and the present "Har­
tree-Fock perturbation" scheme. 

GENERAL THEORY 

The nonrelativistic Hamiltonian for the helium atom 
is given by 

3C=A(l)+A(2)+l/r12, (1) 

where h(i) is the "bare nucleus" Hamiltonian,13 

A(i)=-iA<-Z/r t-. (2) 

For the ground state, the Hartree-Fock wave function 
is a simple orbital product function, 

¥o=*(l)*(2) (3) 
7 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-

and Two-Electron Atoms (Academic Press Inc., New York, 1957), 
pp. 122-123. 

8 E. A. Hylleraas, Z. Physik 65, 209 (1930). 
9 J. Linderberg and H. Shull, J. Mol. Spectroscopy 5, 1 (1960). 
10 C. Schwartz, Phys. Rev. 126, 1015 (1962). 
11 W. B. Somerville and A. L. Stewart, Proc. Phys. Soc. (London) 

80, 97 (1962). 
12 R. E. Knight and C. W. Scherr, Phys. Rev. 128, 2675 (1962). 
13 Atomic units are used throughout this paper. Distance is in 

units of the Bohr radius, and energy in units of 2RM, where RM 
is the reduced mass Rydberg. 
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where we have suppressed the spin part of the function, 
and the orbitals are eigenfunctions of the Fock operator; 

F(i)<p(i) = v<p(i), (4a) 

F{i) = h{i)+J,{i), (4b) 

J*®=fdVj(\<p(j)\*/rii)- (4c) 

J<P is the usual Coulomb operator of self-consistent field 
theory and rj the orbital energy. 

The Hamiltonian (1) can be rewritten in the following 
fashion: 

3C=3C0+F (5) 
with 

3C 0 =F(1)+F(2) , (6a) 

F = l / r i 2 - / , ( l ) - / , ( 2 ) / (6b) 

Now, the Hartree-Fock function is an eigenfunction of 
3C0, which we treat as a zeroth-order Hamiltonian, 

X^ 0 =2i^o, (7) 

and V, the "fluctuation potential", becomes a perturba­
tion. The exact wave function and energy are given 
by the perturbation series, 

* = l M - * i + i M - - •• (8a) 

E= €o+ €i+ €2+ €3H , (8b) 

where the ^»'s are solutions of the equations 

( 3 e 0 - € o ) * i = € i ^ 0 - F i h , (9a) 

(3C0- e0)^2= €2^o+ € i i h - Vfa, (9b) 

and the energies are given by the standard expressions, 

€o= 2r), (10a) 

6 i = ^ o | F | ^ 0 ) = - ^ | / , k > , (10b) 

€2=<lMF|*i>, (IOC) 

€ 8 = ( ^ l | F - € i | ^ 1 > . (lOd) 

Also, the expectation of any operator / , through first 
order, is given by 

< * l / ^ > i = ^ o | / | ^ o > + 2 ^ o | / | * i > . (11) 

The Hartree-Fock total energy, in terms of the pertur­
bation energies, is 

£ H F = €0+€l=2?7— ( p | / p | <p). (12) 

I t should be noted, in Eqs. (10) and (11), that we have 
taken SFi orthogonal to ^o, which can be done without 
loss of generality and insures the normalization of the 
total wave function through first order. 

As is well known,7 these perturbation equations can 
be obtained by a variational principle; namely, making 

the following integral an extremum: 

/ = < l M (5Co-€o)^ i -2(6 1 -F)^o) , (13) 

with respect to an arbitrary variation of \£i, leads to 
Eq. (9a). For the exact S î, (13) is just the second-order 
energy, while for an approximate function, it is an upper 
bound to €2. If, now, one approximates ^ i by a linear 
combination of basis functions, 

^ I = E P ^ , (14) 

and applies this variational principle, the matrix ana­
log of (9a) results, 

( H o - e o S ) c = € i S - v , (15) 

where the matrix and vector elements are given by 

(H0)^=(<£p[3Co|<£g), (S)pq=(<l>p\4>q)9 

(s)p=<¥o|*o>, (v)p=<^o |7 |0 p >. 

For the present calculations, SFi was approximated by 
a Hylleraas-like expansion, 

* i = (87T)-1 £ Cij^e-n-nipiW+pMpif, 
ijft 

P=?r, (17) 

where f is an additional variational parameter available 
for minimizing €2. For purposes of computing the matrix 
elements, analytic approximations for the Hartree-Fock 
orbitals were used, expanding them in the standard 
set of Slater-type orbitals (STO's); 

<P=E fl»«(2a)"+*(4ir(2»)!)-1^*-16r«'. (18) 
n,oc 

All the matrix elements (16) can be reduced to the usual 
two-electron integrals of the conventional variational 
calculations. The reduction of matrix elements involving 
J9 to these integrals is given in an Appendix. 

The more conventional hydrogenic perturbation 
scheme is obtained by taking the first two terms of (1), 
the "bare nucleus" Hamiltonians, as the zeroth-order 
Hamiltonian and the entire electronic repulsion as the 
perturbation. The zeroth-order solution is an orbital 
product of hydrogenic functions, and the wave function 
and energy expansions become descending power series 
in Z, the energy series beginning with Z2. 

RESULTS AND DISCUSSION 

The energies computed for helium with expansion 
lengths as high as 50 terms are shown in Table I. The 
notation £3 refers to the total energy computed through 
third order, i.e., 

n 

The second- and third-order energies appear to be rea­
sonably well converged and probably represent the true 
values to at least four decimal places. I t is, however, 
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TABLE I. Hartree-Fock perturbation energies (in a.u.) 
for the ground state of helium. 

Maximum No. of 
of i-\~j~h/i t e rms 
inEq. (17) in ^ i e2 u £3 

7 
13 
22 
34 
50 

-0.04763 
-0.04817 
-0.04832 
-0.04834 
-0.04835 

0.00670 
0.00722 
0.00737 
0.00740 
0.00741 

£ H - F = -2.86168 
inexact = - 2 . 9 0 3 7 2 a 

a See Ref. 2. 

somewhat discouraging that the total energy is no closer 
to the eigenvalue. The error is about 0.03 eV, which may 
well portend substantial energy errors if the scheme were 
applied to much larger systems, say 6 to 10 electrons. 

Our numerical experience also indicates that no more 
than the number of figures given are really significant; 
there may even be an uncertainty of 1 or 2 in the last 
place. The reason is apparently the approximate nature 
of the zeroth-order (Hartree-Fock) functions, which, of 
course, are not known exactly. This is a limitation that 
will probably apply to any scheme which explicitly in­
corporates the Hartree-Fock solutions as a starting 
point. I t is, perhaps, curious to note that the total 
energy through third order is quite insensitive to the 
accuracy with which \f/i is approximated, even though 
the individual €2 and e3 are not. 

The expectation values of a selection of operators 
and their first-order corrections are shown in Table II . 
The first-order corrections were computed with the 50-
term function; calculations with the smaller wave 
functions indicated good convergence for all the values 
given. The zeroth-order part, of course, is just the 
Hartree-Fock expectation value. I t has been shown that 
the first-order correction to a Hartree-Fock expectation 
value of any one-electron operator should vanish identic­
ally,6 and this is borne out by our direct calculations. 
This feature, in fact, provided a nice additional check 
on our numerical work. For one-electron operators, 
therefore, the Hartree-Fock results are unchanged, and 

TABLE II. First-order corrections to the Hartree-Fock expecta­
tion values of some one- and two-electron operators. 

/ 
rCl 

r\ 
n2 

rn * 
f l 2 

?'122 

V'V2 
ri-r2 
5(ri) 
5(r12) 

<0|/|0> 

1.6874 
0.9273 
1.1849 
1.0258 
1.3622 
2.3698 
0.0 
0.0 
1.7981 
0.1906 

<0|/|1> 

-0.0001 
0.0000 
0.0000 

-0.0483 
0.0351 
0.0859 

-0.1060 
-0.0429 
-0.0002 
-0.0574 

( / ) l 

1.6872 
0.9272 
1.1849 
0.9291 
1.4325 
2.5416 

- 0 . 2 1 2 1 
- 0 . 0 8 5 9 

1.7977 
0.0759 

\ / )exact a 

1.6883 
0.9295 
1.1935 
0.9458 
1.4221 
2.5164 

- 0 . 1 5 9 1 
- 0 . 0 6 4 7 

1.8104 
0.1063 

indeed they are already quite good. All the two-electron 
operator expectation values are substantially improved, 
although, just as with the energy, the corrections may 
leave something to be desired. The delta function, 
5(ri2), for instance is a rather severe measure of correla­
tion effects,14 and it is still off by about 30%; the 
Hartree-Fock error is about 80%. 

The vanishing of the first-order corrections for one-
electron operators follows from a general "strong 
orthogonality" property of the first-order function.3-5 

For this particular separation of the Hamiltonian, the 
structure of the first-order Eq. (9a) is such that Ŝ i is 
automatically insured to be strongly orthogonal to the 
orbital cp, i.e., 

/ ( 1 ) = A*7,¥i( l ,2)*(2) = 0. (19) 

This integral was actually computed and tabulated for 
ri ranging from 0.0 to 2.0 and found to be 10~M0~5 

of the value of the Hartree-Fock orbital. 

TABLE III. Energies for the helium isoelectronic sequence (in 
a.u.); comparison of the hydrogenic and Hartree-Fock perturbation 
results. 

E1 

Hartree-Fock e2 

€3 

£3 

Hydrogen ic a 7/ 

F J> 
-'-'exact 

H -

- 0 . 4 8 7 9 3 
- 0 . 0 5 4 7 8 

0.02330 
- 0 . 5 1 9 4 2 

- 0 . 3 7 5 
- 0 . 5 2 3 9 7 

- 0 . 5 2 7 7 5 

He 

- 2 . 8 6 1 6 8 
- 0 . 0 4 8 3 5 

0.00741 
- 2 . 9 0 2 6 2 

- 2 . 7 5 
- 2 . 9 0 3 3 2 

- 2 . 9 0 3 7 2 

Li+ 

- 7 . 2 3 6 4 1 
- 0 . 0 4 7 4 8 

0.00440 
- 7 . 2 7 9 4 9 

- 7 . 1 2 5 
- 7 . 2 7 9 7 7 

- 7 . 2 7 9 9 1 

Be24" 

- 1 3 . 6 1 1 3 0 
- 0 . 0 4 7 2 5 

0.00322 
- 1 3 . 6 5 5 3 3 

- 1 3 . 5 0 
- 1 3 . 6 5 5 4 9 

- 1 3 . 6 5 5 5 7 

» See Ref. 12. 
b See Ref. 2. 

First-order corrections were also computed for the 
isoelectronic ions through Z = 4 . The energy results are 
given in Table I I I , which also includes the analogous 
hydrogenic perturbation results. I t should be noted that 
the 50-term first-order function for H~~ has still not con­
verged. We estimate that there may still be an error in 
the energy of 0.00015 a.u., which however, does not sub­
stantially alter the conclusion that the first-order func­
tion, in an isoelectronic sequence, contains an increas­
ingly larger portion of the correlation correction as Z 
increases. 

The comparison with the hydrogenic perturbation 
results are somewhat interesting. Although our energy 
through first order (Hartree-Fock total energy) is 
better than the corresponding hydrogenic energy, the 
total energy through third order is worse. While the 
Hartree-Fock approximation provides a better starting 
point, the hydrogenic first-order function appears to 
more than make up for the initial deficiencies of the 
scheme, energetically at least. With regard to expecta­
tion values of other operators, the situation generally 

» See Ref. 2. 14 J. Cooper and J. B. Martin, Phys. Rev. 131, 1183 (1963). 
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appears to be the other way around. Table IV lists some 
expectation values computed to first order in both 
schemes, duplicating some of the numbers of Table I I . 
With the exception of rf1, r\<rl (which emphasize those 
regions of space important for the energy), and ri-r2, 
the present results are closer to the exact values. The 
results for one-electron operators, of course, merely 
reflect the superiority of the Hartree-Fock function. 

Some calculations were also done on helium, using 
only even powers of rn in the approximate first-order 
function (17). This is equivalent to an expansion in 
Legendre polynomials of the angle between ri and r2, 
i.e., it is stimulating a configuration interaction type 
approximation to the first-order function. These results 
are given in Table V, where the S and S+P notation 
refers to functions with no r 12 terms and functions in­
cluding only zero and second power terms, respectively. 
While we were not able to use sufficiently large expan­
sions to definitely determine the angular limits, the 
results should be qualitatively correct. I t is clear that 

TABLE IV. Some helium expectation values through first order; 
comparison of the hydrogenic and Hartree-Fock perturbation 
calculations. 

Operator 

rr1 

n 
n2 

nr1 

ri2 
rn2 

V l ' V 2 
ri«r2 

*(ri) 
«(ru) 

Hydrogenic* 

1.6875 
0.8203 
1.0488 
0.9347 
1.3512 
2.0030 

-0.2666 
-0.0473 

1.6962 
0.0090 

Hartree-Fock 

1.6872 
0.9272 
1.1848 
0.9291 
1.4325 
2.5416 

-0.2121 
-0.0859 

1.7977 
0.0759 

Exactb 

1.6883 
0.9295 
1.1935 
0.9458 
1.4221 
2.5164 

-0.1591 
-0.0647 

1.8104 
0.1063 

» See Ref. 12. 
*> See Ref. 2. 

most of the first-order correction is due to angular 
effects. 

In all these calculations, a five-term representation 
of the Hartree-Fock orbital was used. In particular, it 
was expanded in five Slater-type Is orbitals (fully 
optimized). To determine the effect of using a cruder 
approximation to the Hartree-Fock, the calculations 
were repeated with a three-term, "single exponential" 
expansion of the H-F orbital. The results for €2 and e3 

differed by 4 and 5 units, respectively, in the fifth place 
from our best values in Table I. 

CONCLUSIONS 

The present pilot calculations on two-electron atoms 
suggest that a perturbation scheme based explicitly on 
the Hartree-Fock model will, in first order, account for 
a major share of the correlation effects. The energy and 
expectation values (with the exception of one-electron 
properties) are substantially improved by the first-order 

TABLE V. Angular limit calculations for h 

No. of 
Angular terms 

type in ^1 €2 

S 16 -0.01794 
S+F 28 -0.04253 

All types 50 -0.04835 

C3 

0.00083 
0.00413 
0.00741 

elium. 

Ez 

-2.87879 
-2.90007 
-2.90262 

correction. Hence, for atomic and molecular properties, 
this procedure may provide a reasonably good "second 
stage of approximation" after the Hartree-Fock. 

However, if one is interested in a high degree of 
absolute precision, some caution may be in order. This 
procedure obtains 97.5% of the correlation energy for 
helium, corresponding to an absolute error, due to 
higher order effects, of 0.03 eV. Since this error will 
almost certainly increase with the number of electrons, 
a first-order treatment may well become inadequate for 
much larger systems than helium. Our H~ results also 
indicate that the higher order effects of correlation are 
most important for negative ions, and they would have 
to be explicitly taken into account to get reliable results 
for such properties as electron affinities. 

In order to obtain definitive quantitative results, we 
have explicitly introduced the interelectronic coordinate, 
r 12, into the first-order trial functions. In attempting to 
extend this technique to larger systems, however, one 
gets the same three-electron integral problems as in 
the usual variational approaches; they are brought in 
by the exchange effects in the Fock operator. To avoid 
these integral difficulties, one would presumably have to 
make use of some kind of configuration interaction type 
approximation for ^ 1 , and it may be of some interest 
to examine the convergence properties of this method 
when applied to this perturbation scheme. Its generally 
slow convergence, however, seems to warrant a rather 
pessimistic outlook.11,15 
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APPENDIX 

The matrix elements of Eq. (16) are readily reduced 
to sums over the conventional two-electron integrals 
that always arise in any variational calculation on 
helium, which uses rn explicitly. The only operator 
that warrants any discussion is the Coulomb operator 

5 A. W. Weiss, Phys. Rev. 122, 1826 (1961). 
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(4c), which can be written more specifically as, 

Jv(l) = rrl( dr*M2)+[ dr2r2p(2), (Al) 
Jo J n 

where p is the radial charge distribution for the s 
orbital. Upon inserting the expansion [Eq. (18)] for 
the Hartree-Fock orbital, p becomes 

P(2) = E £ anaana'{2aY^(2afY+h 

n,a nf,ct' 

Carrying out the indicated integrations, (Al) becomes 

/„(1) = E £ anaana'{2aY+K2ot'Y'+h 

Xi(2n)l(2n')ftll2(n+n')\(a+a')-n~n'~1 

X 
1 1 

p~ (ct+a')n 

ri n 

a-\-a! 

n+n' 
.p—(a+a')ri 

n+n'-2 (n+nf—k— l)(a+a')k 

x Z 
*-o 0+1)1 

- f i (A3) 

Matrix elements for this operator are clearly simply 
X[(2^) \{2n')!]-i/V2

n+"'~V~(a+a')r2. (A2) multiple sums over the usual helium-like integrals. 
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Observed and Predicted New Autoionized Energy Levels in 
Krypton, Argon, and Xenon* 

JAMES A. R. SAMSON 

Physics Research Division, Geophysics Corporation of America, Bedford, Massachusetts 
(Received 17 July 1963) 

The absorption spectrum of argon and krypton has been investigated between 400-600 A. Discrete 
structure is observed which can be related to the excitation of an inner s electron. Configuration interactions 
between the discrete excited levels and the overlapping ionization continuum leads to autoionization of the 
energy levels, as evidenced by the fact that the measured photoionization yield within the discrete structure 
is 100%. The first member of the series is observed at 466 A for argon and 497 A for krypton with a predicted 
value of 593 A for xenon. The Rydberg series v~235 832—R/(n—1.53)2, n=4, 5, • • •, etc., describes the 
argon data while similar series are predicted for krypton and xenon with quantum defects equal to 2.53 and 
3.53, respectively, and using the appropriate term value for their respective Ni and Oi absorption edges. 

TH E photoionization cross sections of argon and 
krypton have been measured between 400-560 A. 

In both gases discrete structure is observed superim­
posed on the photoionization absorption continuum. 
The structure in argon can be identified with the new 
autoionized energy levels recently observed spectro-
scopically by Madden and Codling,1 while that of 
krypton has not previously been reported. The structure 
in the krypton photoionization cross sections is assumed 
also to be due to autoionized energy levels, since the 
photoionization yields for the discrete structure in both 
argon and krypton were measured and found to be 
100%. 

The anomalous nature of the autoionized lines in 
showing a decrease in absorption with no accompany­
ing increase is apparently allowed in the Fano theory of 
autoionization.2 

The cross-section measurements were made on a 1/2 
M Seya-type vacuum monochromator with a 2.5-A 

* This work has been supported in part by the National Aero­
nautics and Space Administration. 

1 R. P. Madden and K. Codling, Phys. Rev. Letters 10, 516 
(1963). 

2 U. Fano, Phys. Rev. 124, 1866 (1961). 

band pass. The light source consisted of a high-
voltage repetitive spark discharge in argon which pro­
duced an extremely dense line spectrum above 400 A. 
The absorption cell consisted of two ionization chambers 
in series and of identical lengths d. The absorption co­
efficient M is then given by 

P=bi(ii/i2)/d, 

where i\ and i% are the ion currents produced, respec­
tively, in the two-ion chambers. A detailed discussion of 
this technique is described in another paper.3 The gas 
pressure was varied from 0.05-0.5 Torr and the effective 
absorption length d wras 10 cm. The major advantage 
of this technique in the measurement of absorption co­
efficients is that ii and i2 (and hence /J) are measured 
simultaneously and are, therefore, independent of any 
changes in light source intensity. 

The photoionization cross sections, reduced to STP, 
are shown in Figs. 1 and 2 for argon and krypton, re­
spectively. With the exception of the discrete structure 
the cross sections are pressure-independent ( ± 5 % ) over 
a pressure range of 0.05-0.5 Torr. 

3 J. A. R. Samson, J. Opt. Soc. Am. 53, 507 (1963). 


